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Abstract
In this work we have calculated the ferromagnetic (FM) resonance curves of
Fe/Cr(100) thin films, which follow the Fibonacci sequence. Our approach
is based on the equations of motion for the small-signal magnetization
deviation from the equilibrium directions. The equilibrium positions of
the magnetizations are calculated from the total energy, which includes the
following contributions: Zeeman, bilinear exchange, biquadratic exchange,
dipolar, cubic anisotropy and surface anisotropy terms. We also consider the
presence of an external magnetic field applied in the plane of the films and
parallel to the easy axes. The experimental parameters used in our calculations
were recently reported and lie in three regions of interest, namely (i) near
to the first antiferromagnetic (AF) peak (strong bilinear exchange coupling),
(ii) near to the first FM–AF transition (moderate bilinear exchange coupling) and
(iii) near to the second AF peak (weak bilinear exchange coupling comparable
to the biquadratic exchange coupling). Our results show the effect of the quasi-
periodic arrangement in the spin wave dispersion relation of these artificial
structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quasicrystals were discovered by Shechtman and co-workers [1] in 1984. They mixed
aluminum and manganese in a roughly six-to-one proportion and heated the mixture until
it melted. The mixture was then rapidly cooled back into the solid state by dropping the liquid
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onto a cold spinning wheel, a process known as melt spinning. When the solidified alloy was
examined, using an electron microscope, a novel structure was revealed. It exhibited fivefold
symmetry, which is forbidden in crystals, and long-range order, which is lacking in amorphous
solids. Its order, therefore, was neither amorphous nor crystalline.

Levine and Steinhardt [2] introduced the term quasicrystal for this special incommensurate
structure. The origin of the name quasicrystal, also called quasi-periodic crystal (for a review
see [3–5]), arises from the fact that these materials have quasi-periodic translational order, as
opposed to the periodic order of ordinary crystals. It can be examined in terms of a high-
resolution electron micrograph. The rows of bright spots are separated by small and large
intervals. As in the Penrose pattern [6], the length of the large interval divided by the length
of the small one is equal to the golden mean number, τ = 1

2 (1 +
√

5), and the sequence of
large and small intervals reproduces the Fibonacci sequence. Moreover, they suggested that
the translational order of atoms in quasi-crystalline alloys might be quasi-periodic rather than
periodic.

The procedure to grow quasi-periodic superlattices became standard after the work of
Merlin et al [7], who reported the realization of the first quasi-periodic superlattice, consisting
of alternating layers of GaAs (building block A) and AlAs (building block B), following the
Fibonacci sequence by means of molecular beam epitaxy (MBE). Since then, the behaviour
of a variety of particles or quasi-particles (electrons, phonons, photons, polaritons, magnons
etc) has been and is currently being studied in quasi-periodic systems [8–10].

A quite interesting characteristic of these quasi-periodic crystals is the fact that they display
collective properties, due to the presence of long-range correlations, that are not shared by their
constituents. Besides, apart from their theoretical relevance, they have potential technological
interest in several areas.

In a quasi-periodic system, all the states are critical. The wavefunctions are neither Bloch-
type extended states, as in periodic systems, nor exponentially localized states, as in disordered
systems. The wave spectrum has a singular continuous character, so they can be defined as
systems intermediate between periodic crystals and random amorphous solids, defining a novel
description of disorder [11]. The energy spectrum also has a rich self-similar structure, with
various scaling indices. The gaps are distributed densely and there are no isolated states. Thus
they define a Cantor set, with zero Lebesgue measure [12]. The profile of the integrated density
of states resembles very much the shape of the devil’s staircase. When the quasiperiodicity is
stronger, the spectra are more fractured, with a multiplicity of gaps [13].

Parallel to these developments in the field of quasicrystals, the properties of magnetic
exchange interactions between FM films separated by nonmagnetic spacers have also been
widely investigated [14]. The discovery of physical properties such as AF exchange
coupling [15], giant magnetoresistance (GMR) [16], oscillatory behaviour of the exchange
coupling [17] and biquadratic exchange coupling [18] made these films excellent options for
technological applications and attractive objects of research.

The spin wave dispersion relations for trilayer structures have been calculated by several
authors. Solutions including, besides the usual exchange and dipolar contributions, the bilinear
exchange coupling were worked out by Hillebrands [19], for an arbitrary number of magnetic
layers. For a trilayer structure, formed by two magnetic films separated by a nonmagnetic
spacer, the dispersion relation was obtained from a system of 16 linear equations. Rezende
et al [20] presented model calculations for the trilayer structure, where the coupling between the
magnetic fields through magnetic dipolar, bilinear and biquadratic exchange interactions was
fully taken into account, together with surface, in-plane uniaxial and cubic anisotropies. Their
approach was based on the equation of motion for the small-signal magnetization deviations
from the equilibrium directions.
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Figure 1. Schematic illustration of the Fibonacci structures considered in this paper.

In recent works [21,22] we have studied the magnetization and magnetoresistance curves
of ultra-thin magnetic films (Fe/Cr) grown following the Fibonacci sequence, where, depending
on the ratio between the biquadratic and the bilinear exchange coupling terms, a striking self-
similar pattern was found. It is the aim of this work to use the magnetization equation of
motion technique to study the spin wave spectra in these Fe/Cr(100) quasi-periodic Fibonacci
structures, using the experimental magnetic parameters reported by Rezende et al [20]. In our
specific case we choose Fe as the building block A, with thickness d1, and Cr as the building
block B, with thickness d2 (see figure 1). Although the bilinear and biquadratic exchange
coupling parameters may oscillate as functions of the non-magnetic layer thicknesses (Cr),
we can justify the use of their physical parameters in our calculations, since for the quasi-
periodic Fibonacci sequence considered here there are only single Cr layers, no matter which
generation is considered. Regarding the exchange coupling oscillation as a function of the FM
layer thickness, our numerical calculation may be justified for the case where the layers are
sufficiently thick.

The plan of this work is as follows: in section 2, we present the method of calculation
employed here, which is based on the equation of motion approach, to study the problem of thin
magnetic films. The dispersion relation of the spin waves is then determined for the particular
trilayer magnetic system, and then generalized for any Fibonacci generation number. Section 3
is devoted to the discussion of the results found in the precedent section, emphasizing their
main features. The conclusions are also in section 3.
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2. General theory

Before describing our model, let us briefly review the Fibonacci quasi-periodic sequence
considered in this work. The Fibonacci structure is of the type called substitutional sequences.
It is characterized by the nature of its Fourier spectrum, which is dense pure point. Let us
first recall the definition of a substitutional sequence. Take a finite set ξ (here ξ = A,B,
A and B being different building blocks) called an alphabet, and denote by ξ ∗ the set of
all words of finite length that can be written in this alphabet. Now let ζ be a map from ξ

to ξ ∗ by specifying that ζ acts on a word by substituting each letter (e.g. A) of this word
by its corresponding image ζ(A). A sequence is then called a substitution sequence if it is
a fixed point of ζ , i.e. if it remains invariant when each letter in the sequence is replaced
by its image under ζ . For the Fibonacci sequence we have the rules A → ζ(A) = AB,
B → ζ(B) = A.

A quasiperiodic Fibonacci structure can be grown experimentally by juxtaposing the two
building blocks A and B in such a way that the nth stage of the structure Sn is given interactively
by the rule Sn = Sn−1Sn−2 for n � 2, with S0 = B and S1 = A (initial conditions). It is also
invariant under the transformations A → AB and B → A. In our specific case we choose Fe as
building block A with thickness d1 and Cr as building block B with thickness d2 (see figure 1).
The number of building blocks increases according to the Fibonacci number, Fn = Fn−1 +Fn−2

(with F0 = F1 = 1), and the ratio between the number of building blocks A and the number
of building blocks B in the sequence is equal to the golden mean number τ . The Fibonacci
generations are S0 = [B], S1 = [A], S2 = [AB], S3 = [ABA] and so on. Therefore the trilayer
Fe/Cr/Fe is the correspondent of the third Fibonacci generation [ABA]. We notice that only
odd Fibonacci generations have a magnetic counterpart, because they start and finish with Fe
(building block A). Observe that for n > 3, n being the Fibonacci generation number, the
quasiperiodic structure will always be constituted by single Cr layers and single and double
Fe ones.

Let us now derive the spin wave dispersion relation using the well known torque equation
for the magnetization on film i, i.e.

d �Mi

dt
= −γ �Mi × �Heff (1)

where γ = gµBh̄ is the gyromagnetic ratio, g being the Landé factor and µB the Bohr
magneton. �Heff is the effective magnetic field acting on �Mi .

For each magnetic film we write a Cartesian coordinate system, called the local axis
system, with the z axis coinciding with the equilibrium direction of the magnetization. For
each film, the magnetization is then given by

�Mi = Mizi êzi + miyêy + mixi êxi (2)

and we assume that mixi , miy 	 Mizi . Note that the y axis of the local axis systems coincides
with the crystalline y axis (we do not need to index the local axis system to the y component).
The transformation to connect the components of the magnetization from the original variables
is given by (see figure 2)

Mix = Mizi sin θi + mixi cos θi Miy = miy Miz = Mizi cos θi − mixi sin θi . (3)

Likewise, the effective magnetic field is expressed as

�Heff = Hizi êzi + hiy êy + hixi êxi . (4)
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Figure 2. Illustration of the local axis system. The z direction is chosen to stay aligned with the
equilibrium position of the magnetization.

Substituting the magnetization (2) and the effective field (4) into (1), and writing only the
non-null components, we have

dmiy

dt
= −γi(Mizi hixi − mixiHizi )

dmixi

dt
= −γi(miyHizi − Mizi hiy).

(5)

The relation between the effective field and the total energy is well known, being defined
by

�Heff = −∇MET. (6)

Here, the total magnetic energy is given by

ET = EZ + Ebl + Ebq + Ed + Eca + Esa (7)

whereEZ,Ebl,Ebq,Ed,Eca andEsa are respectively the Zeeman, bilinear, biquadratic, dipolar,
cubic anisotropy and surface anisotropy energies.

Let us now define all components of the total energy individually. The Zeeman interaction
energy is the scalar product of the magnetization by the external applied magnetic field. In the
case of N magnetic films, it is given by

EZ = −
N∑
i=1

di �Mi · �H0 (8)
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where di is the width of each FM layer, and �Mi and �H0 are the magnetization and the external
magnetic field, respectively. The bilinear and the biquadratic energies are defined as

Ebl = −
N−1∑
i=1

Jbl

�Mi · �Mi+1

| �Mi || �Mi+1|
(9)

and

Ebq =
N−1∑
i=1

Jbq

( �Mi · �Mi+1

| �Mi || �Mi+1|

)2

(10)

where Jbl and Jbq are, respectively, the bilinear and biquadratic exchange constants. The
dipolar energy, also called the demagnetizing energy, is given by

Ed = 2π
N∑
i=1

di( �Mi · êy)2. (11)

The cubic and surface anisotropy energies can be written in the form

Eca =
N∑
i=1

diKca

| �Mi |4
(M2

ixM
2
iy + M2

ixM
2
iz + M2

iyM
2
iz) (12)

and

Esa = −
N∑
i=1

Ks

M2
i

( �Mi · êy)2 (13)

where Ks is the surface anisotropy constant.
To calculate the effective fields hixi , hiy and Hizi , we use

hixi = − ∂ET

∂mixi

hiy = − ∂ET

∂miy

and Hizi = − ∂ET

∂mizi

. (14)

Writing explicitly the equations of motion for N magnetic films, it is necessary to solve a
system of 2N equations

1

γi

N∑
i=1

dmiy

dt
= Mizi

(
∂ET

∂mixi

)
− mixi

(
∂ET

∂mizi

)

1

γi

N∑
i=1

dmixi

dt
= miy

(
∂ET

∂mizi

)
− mizi

(
∂ET

∂miy

) (15)

where N is the total number of layers of type A. In the case of the trilayer Fe/Cr/Fe we
have N = 2, corresponding to the third Fibonacci sequence (n = 3). For the seven-layer
case, Fe/Cr/2Fe/Cr/Fe/Cr/Fe, we have N = 4, corresponding to the fifth Fibonacci generation
(n = 5) etc (see figure 1).

Now, using (6), with the help of the total magnetic energy (7), and considering solutions
of the type

mixi = m0
ixi

exp(−iωt) miy = m0
iy exp(−iωt) (16)

with N = 2 and i = 1, 2 we can obtain, after a little algebra,


− iω
γ

H1 0 H2

−H3 − iω
γ

H4 0

0 H1 − iω
γ

H2

H3 0 −H4 − iω
γ





m1x1

m1y

m2x2

m2y


 = 0 (17)

where
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H1 = H0 cos(θ1 − θH ) + Hbl cos(θ1 − θ2) − Hca

2
[sin2(2θ1) − 2]

−2Hbq cos2(θ1 − θ2) + 4πMs − Hsa (18)

H2 = −Hbl + 2Hbq cos(θ1 − θ2) (19)

H3 = H0 cos(θ1 − θH ) + Hbl cos(θ1 − θ2) − 2Hbq cos(θ1 − θ2) − Hca

2
[4 sin2(2θ1) − 2] (20)

H4 = −Hbl cos(θ1 − θ2) + 2Hbq cos[2(θ1 − θ2)]. (21)

From the resulting 4 × 4 determinantal condition we find

(ω/γ )4 + α0(ω/γ )2 + α1 = 0 (22)

and after some algebraic steps we obtain the dispersion relation for the trilayer case:

(ω/γ )2 = −α0/2 ±
√
(α0/2)2 − α1 (23)

with

α0 = −H2H4 + H1H4 − H1H3 + H2H3

α1 = −H1H4G1G4 + H1H3G1G3 − H2H3G2G3 + H2H4G2G4.

The coefficients Gi can be obtained from Hi by interchanging i = 1 for 2 (layer index).
The four-magnetic-film case can now be treated using the same method as applied for the

two-film case. In this way (17) is replaced by (N = 4 and i = 1, 2, 3, 4)


− iω
γ

H2 0 H3 0 0 0 0

−H5 − iω
γ

H6 0 0 0 0 0

0 G1 − iω
γ

G2 0 G3 0 0

G4 0 −G5 − iω
γ

G6 0 0 0

0 0 0 I1 − iω
γ

I2 0 I3

0 0 I4 0 −I5 − iω
γ

I6 0

0 0 0 0 0 J1 − iω
γ

J2

0 0 0 0 J4 0 −J5 − iω
γ







m1x1

m1y

m2x2

m2y

m3x3

m3y

m4x4

m4y




= 0. (24)

The coefficients Hi , Gi , Ii and Ji can be obtained using the expressions below:

X1 = H0 cos(θi − θH ) + Hbl cos(θi − θi+1) − Hca

2
[sin2(2θi) − 2]

−2Hbq cos2(θi − θi+1) + 4πMs − Hsa (25)

X2 = −Hbl + 2Hbq cos(θi − θi+1) (26)

X3 = H0 cos(θi − θH ) + Hbl cos(θi − θi+1) − 2Hbq cos[2(θi − θi+1)] − Hca

2
[4 sin2(2θi) − 2]

(27)

X4 = Hbl cos(θi − θi+1) − 2Hbq cos[2(θi − θi+1)] (28)

Y1 = H0 cos(θi+1 − θH ) + Hbl[cos(θi − θi+1) + cos(θi+1 − θi+2)] − Hca

2
[sin2(2θi+1) − 2]

−2Hbq[cos2(θi − θi+1) + cos2(θi+1 − θi+2)] + 4πMs − Hsa (29)

Y2 = −Hbl + 2Hbq cos(θi+1 − θi+2) (30)

Y3 = H0 cos(θi+1 − θH ) + Hbl[cos(θi − θi+1) + cos(θi+1 − θi+2)] − 2Hbq{cos[2(θi − θi+1)]

+ cos[2(θi+1 − θi+2)]} − Hca

2
[4 sin2(2θi+1) − 2] (31)

Y4 = Hbl cos(θi+1 − θi+2) − 2Hbq cos[2(θi+1 − θi+2)] (32)
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in such a way that

X1 = H2 X2 = H3 X3 = H5 X4 = H6

Y1 = G2 Y2 = G3 Y3 = G5 Y4 = G6

}
for i = 1

Y1 = I2 Y2 = I3 Y3 = I5 Y4 = I6 for i = 2

X1 = J2 X2 = J1 X3 = J5 X4 = J4 for i = 3

(33)

with G1 = H3, G3 = I1, G4 = H6 and G6 = I4.
From the resulting 8 × 8 determinant condition we obtain the desired dispersion relation,

i.e. (
ω

γ

)8

+ α0

(
ω

γ

)6

+ α1

(
ω

γ

)4

+ α2

(
ω

γ

)2

+ α3 = 0 (34)

with the α coefficients defined in appendix A.
For the case of nine or more films, we also use the solutions of the type found in (16),

with N = 9 and i = 1, 2, . . . , 9. Proceeding in a similar way to the two previous cases, we
can generalize the spin-wave dispersion relation for any N magnetic films by(

ω

γ

)2N

+

[ 2∑
j=(2N−2),(2N−4),...

N−2∑
k=0

αk

(
ω

γ

)j ]
+ αN−1 = 0. (35)

3. Numerical results and conclusions

In this section we present numerical results for the spin wave dispersion relation, which can
propagate in magnetic thin films following a quasi-periodic Fibonacci sequence. A physical
motivation for this is that these structures can exhibit magnetic properties not found in the
periodic case. Our results are divided into three groups regarding the physical parameters
used in this theoretical calculation, namely the first parameter set, near to the first AF
peak (strong bilinear exchange coupling), with Hbq = −0.1Hbl = 0.1 kOe, a second
parameter set, near to the first FM–AF transition (moderate bilinear exchange coupling),
with Hbq = −(1/3)Hbl = 0.05 kOe, and lastly a third set, near to the second AF peak
(weak bilinear exchange coupling comparable to the biquadratic exchange coupling), with
Hbq = −Hbl = 0.035 kOe. For all groups we have the same values for the cubic anisotropy
field, Hca = 0.5 kOe, and also for the surface anisotropy field, Hsa = 2 kOe.

Figures 3–5 show the spin wave spectra for the seven-layer case, which means four
magnetic thin films separated by three non-magnetic spacers. We have considered the three
groups of parameters specified above. In all figures we have plotted the frequency shift (in
GHz) against the external magnetic field (in kOe). Here dashed curves represent the acoustic
modes, while full curves represent the optical mode frequencies. Altogether we have four
dispersion curves representing the four magnetic layers. The most pronounced effect of the
biquadratic coupling, as observed by comparing the three curves, is to shift the frequency of the
optical mode, downwards in the AF and FM phases and upwards in the central region (which
corresponds to the 90◦ magnetic phase). Actually this behaviour has a weak dependence on the
magnetic field within each region, but, as far the determination of the critical field is concerned,
the values taken at the frontier are excellent approximations to the real ones. Similarly, between
the 90◦ magnetic phases and the saturation the effective anisotropies (cubic and surface) has
minimal influence in the spectra.

In a similar way, we have presented in figures 6–8 the spin wave spectra for the much more
robust (and sophisticated!) 17-layer case, which means nine magnetic thin films separated by
eight non-magnetic spacers. Again we have plotted the frequency shift (in GHz) against the
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Figure 3. Spin wave dispersion relations for the heptalayer case using the ratio of the biquadratic
term and the bilinear one equal to 0.1.
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Figure 4. The same as figure 3 but using the ratio between the biquadratic and the bilinear terms
equal to one-third.

external magnetic field (in kOe). For the three figures there are now five acoustic modes and
four optical modes in the spectra. In figure 6 we can see five curves, where the first one
is a partial superimposition between the acoustic mode (dashed curve) and the optical one
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Figure 5. The same as figure 3 but using the ratio equal to unity.

(dotted curve). The second, third and fourth curves are complete superimpositions between
the acoustic and optical modes (full curves). The fifth and last curve is a single acoustic
mode (dashed curve). In figures 7 and 8 the four first curves represent the total superposition
between the acoustic and optical modes (full curves), and the fifth curve represents the optical
mode (dashed curve). Reasonable fits to a hypothetical measured magnetization curves can
be obtained for AF and FM coupling phases, although it is much more complicated to identify
which coupling is the right one. There are some important points that we can infer from this
case:

(a) the reduced values of the biquadratic term (figures 6 and 7) are related only to the transition
between the 90◦ magnetic phase and the saturated region, and therefore it is not possible
to determine the two coupling fields accurately;

(b) surprisingly, the same behaviour was observed in figure 8 in the region around the second
AF peak and

(c) besides these regions, the magnetization curves show qualitatively similar behaviour,
although the same restrictions regarding the coupling fields are sustained.

In conclusion we have presented in this work a theory to treat the low-wavenumber spin
wave dispersion relation for ultra-thin magnetic films which follow the Fibonacci sequence. In
addition to bilinear and biquadratic exchange, our theory takes full account of surface, in-plane
uniaxial and cubic anisotropy interactions. We present analytical expressions up to the 17-
layer case, and a full expression generalizing any Fibonacci generation number. We have used
a three-parameter set, determined by independent fitting, to study the numerical calculations.
Furthermore, our theoretical predictions are adequate to extract reliable values for the magnetic
parameters involved, since the frequencies of the magnetic excitations depend directly upon
the magnetization configuration of each FM layer (see [20] for the Fe/Cr/Fe trilayer case).
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Figure 6. Spin wave dispersion relations for the 17-layer case using the ratio of the biquadratic
term and the bilinear one equal to 0.1.
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Figure 7. The same as figure 6 but using the ratio between the biquadratic and bilinear terms equal
to one-third.

Experimental tools to investigate our theoretical predictions include the magneto-optical
Kerr effect (MOKE), Brillouin light scattering (BLS) and ferromagnetic resonance (FMR).
Our calculations are adequate for low-wavenumber spin waves, and the analytical expressions
derived here can be observed with either BLS experiments (for q �= 0 modes) or FMR
techniques (corresponding to the q = 0 modes). These techniques are among the best methods
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Figure 8. The same as figure 6 but using the ratio equal to unity.

to determine the interlayer exchange coupling between FM films separated by a nonmagnetic
metallic spacer, as used in this work, and we hope our results may encourage experimentalists
to face them.
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Appendix A

The α coefficients, used in (34), are given by

α0 = +G4H3 + G1H6 + I4G3 − H2H5 − J2J5 + J1I6 − I5I2 + I1G6 − G5G2 + J4I3 (36)

α1 = +G1H6J4I3 − I4G3J2J5 + I4J4G3I3 + I4I1G6G3 − G1H6J2J5

+G1H6I1G6 + G1H6J1I6 − G1H6I5I2 − I1G6J2J5 + I1G6J1I6

+H5H2I5I2 − H5H2J4I3 + G4H3J1I6 + I5I2J2J5 − I5J1I3J5

−J4I2I6J2 + J4J1I3I6 − G4H3J2J5 + G4G1H6H3 − G4H2H6G2

−H5G1G5H3 + H5H2G5G2 + H5H2J2J5 − H5H2I4G3 − H5H2I1G6

−H5H2J1I6 − I4G2G6I2 − G5I1I5G3 − G5G2J4I3 − G5G2J1I6

+G5G2I5I2 + G5G2J2J5 + G4I4H3G3 + G4H3J4I3 − G4H3I5I2 (37)

α2 = −G1H6J4I2I6J2 + G1H6J4J1I3I6 − G1H6I5J1I3J5 − G1H6T I1G6J2J5

+G1H6I1G6J1I6 + G1H6I5I2J2J5 − H5H2J4J1I3I6 + H5H2I1G6J2J5

+G4G1H6H3J4I3 + G4H2H6G2J2J5 + G4G1H6H3J1I6 − G4G1H6H3J2J5

−G4H2H6I1I5G3 − G4H2H6G2J4I3 + G4H2H6G2I5I2 − G4H2H6G2J1I6
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−H5G1G5H3J4I3 − H5G1I4H3G6I2 + H5G1G5H3I5I2 − H5G1G5H3J1I6

+H5G1G5H3J2J5 − H5H2I1G6J1I6 + H5H2J4I2I6J2 + H5H2I5J1I3J5

−H5H2I5I2J2J5 − G5G2I5I2J2J5 + G5G2I5J1I3J5 + G5G2J4I2I6J2

−G5I1J4G3I6J2 + I4G2G6I2J2J5 − I4G2G6J1I3J5 − I4I1G6G3J2J5

−H5H2I4J4G3I3 − H5H2I4I1G6G3 + H5H2G5I1I5G3 + H5H2I4G3J2J5

+H5H2I4G2G6I2 − H5H2G5G2J2J5 + H5H2G5G2J4I3 − H5H2G5G2I5I2

+H5H2G5G2J1I6 − G4H3I5J1I3J5 + G4I4H3J4G3I3 − G4I4H3G3J2J5

+G4H3J4J1I3I6 − G5H3J4I2I6J2 − G4G1H6H3I5I2 + G4H3I5I2J2J5 (38)

α3 = +H5H2G5G2I5I2J2J5 − H5H2G5G2I5J1I3J5 − H5H2G5G2J4I2I6J2

+H5H2G5G2J4J1I3I6 − H5H2G5I1I5G3J2J5 + H5H2G5I1J4G3I6J2

−H5H2I4G2G6I2J2J5 + H5H2I4G2G6J1I3J5 + H5H2I4G2G6J1I3J5

+H5H2I4I1G6G3J2J5 − H5G1G5H3I5I2J2J5 + H5G1G5H3I5J1I3J5

+H5G1G5H3J4I2I6J2 − H5G1G5H3J4J1I3I6 + H5G1I4H3G6I2J2J5

−H5G1I4H3G6J1I3J5 − G4H2H6G2I5I2J2J5 + G4H2H6G2I5J1I3J5

+G4H2H6G2J4I2I6J2 − G4H2H6G2J4J1I3I6 + G4H2H6I1I5G3J2J5

−G4H2H6I1J4G3I6J2 + G4G1H6H3I5I2J2J5 − G4G1H6H3I5J1I3J5

−G4G1H6H3J4I2I6J2 + G4G1H6H3J4J1I3I6. (39)
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